Attention has frequently been regarded as an emergent property of linking sensory representations to action plans. It has recently been proposed that similar mechanisms may operate within visual working memory (VWM), such that linking an object in VWM to an action plan strengthens its sensory memory representation, which then expresses as an attentional bias. Here we directly tested this hypothesis by comparing attentional biases induced by VWM representations which were the target of a future action, to those induced by VWM representations that were equally task-relevant, but not the direct target of action. We predicted that the first condition would result in a more prioritized memory state and hence stronger attentional biases. Specifically, participants memorized a geometric shape for a subsequent memory test. At test, in case of a match, participants either had to perform a grip movement on the matching object (action condition), or perform the same movement, but on an unrelated object (control condition). To assess any attentional biases, during the delay period between memorandum and test, participants performed a visual selection task in which either the target was surrounded by the memorized shape (congruent trials) or a distractor (incongruent trials). Eye movements were measured as a proxy for attentional priority. We found a significant interaction for saccade latencies between action condition and shape congruency, reflecting more pronounced VWM-based attentional biases in the action condition. Our results are consistent with the idea that action plans prioritize sensory representations in VWM.